The flavonoid kaempferol protects the fruit fly Drosophila melanogaster against the motor impairment produced by exposure to the insecticide fipronil

Author:

Ramírez-Moreno Daniela M.12,Lubinus Klaus F.23,Riveros Andre J.24ORCID

Affiliation:

1. Facultad de Medicina, Universidad Nacional de Colombia 1 , Bogotá , Colombia

2. Universidad del Rosario 2 Departamento de Biología, Facultad de Ciencias Naturales , , Bogotá , Colombia

3. Facultad de Ciencias, Pontificia Universidad Javeriana 3 , Bogotá , Colombia

4. School of Brain, Mind and Behavior, University of Arizona 4 Department of Neuroscience , , Tucson, AZ 85721 , USA

Abstract

ABSTRACT Exposure to pesticides across species has been associated with cognitive and motor impairments. As the problem impacts ecosystem stability, food production and public health, it is urgent to develop multifactorial solutions, from regulatory legislation to pharmacological alternatives that ameliorate the impairments. Fipronil, a commonly used insecticide, acts as a GABAA receptor (GABAAR) antagonist and induces motor impairments in vertebrates and invertebrates. Here, we hypothesized that kaempferol, a secondary metabolite derived from plants, acting as an allosteric modulator of GABAARs, would protect against the negative effects induced by the administration of fipronil in adults of the fruit fly Drosophila melanogaster. We further evaluated our hypothesis via co-administration of flumazenil, a competitive antagonist on the GABAAR, and through in silico analyses. We administered kaempferol prophylactically at three concentrations (10, 30 and 50 µmol l−1) and evaluated its protective effects against motor impairments induced by fipronil. We then used a single dose of kaempferol (50 µmol l−1) to evaluate its protective effect while administering flumazenil. We found that oral administration of fipronil impaired motor control and walking ability. In contrast, kaempferol was innocuous and protected flies from developing the motor-impaired phenotype, whereas the co-administration of flumazenil counteracted these protective effects. These results are supported by the binding of the ligands with the receptor. Together, our results suggest that kaempferol exerts a protective effect against fipronil via positive allosteric modulation of GABAARs, probably within brain areas such as the central complex and the mushroom bodies. These findings further support current attempts to use metabolites derived from plants as protectors against impairments produced by pesticides.

Funder

Universidad del Rosario

University of Arizona

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3