Behavior and neural activation patterns of non-redundant visual and acoustic signaling during courtship in an African cichlid fish

Author:

King Teisha1ORCID,Ray Emily J.1ORCID,Tramontana Brandon1ORCID,Maruska Karen1ORCID

Affiliation:

1. Louisiana State University Department of Biological Sciences , , 202 Life Sciences Bldg, Baton Rouge, LA 70803 , USA

Abstract

ABSTRACT Animals evolve mechanisms to send and receive communication signals through multiple sensory channels during crucial behavioral contexts such as aggression and reproduction. This ensures the transmission of important context-dependent signals that supply either the same (redundant) or different (non-redundant) information to the receiver. Despite the importance of multimodal communication, there are relatively few species in which information on sender signals and receiver responses are known. Further, little is known about where context-dependent unimodal and multimodal information is processed in the brain to produce adaptive behaviors. We used the African cichlid, Astatotilapia burtoni, to investigate how unimodal and multimodal signals are processed within the female brain in a reproductive context. During courtship, dominant males produce low frequency sounds in conjunction with visual displays (quivers) directed towards receptive gravid females. We compared affiliation behaviors and neural activation patterns in gravid females exposed to visual, acoustic and visual–acoustic signals from courting dominant males. Females displayed reduced affiliation in auditory-only conditions, but similar affiliation during visual and visual–acoustic conditions, demonstrating that visual–acoustic signaling from males is non-redundant but vision dominates. Using the neural activation marker cfos, we identified differential activation in specific socially relevant brain nuclei between unimodal and multimodal conditions and distinct neural co-activation networks associated with each sensory context. Combined with our previous work on chemosensory signaling, we propose that A. burtoni represents a valuable vertebrate model for studying context-dependent behavioral and neural decision making associated with non-redundant multimodal communication.

Funder

National Science Foundation

Louisiana Board of Regents

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3