Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus

Author:

Brennan Reid S.1,Galvez Fernando2,Whitehead Andrew1

Affiliation:

1. Department of Environmental Toxicology, University of California-Davis, California, 95616, USA

2. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA

Abstract

The killifish Fundulus heteroclitus is an estuarine species with broad physiological plasticity enabling acclimation to diverse stressors. Previous work suggests freshwater populations expanded their physiology to accommodate low salinity environments, however, it is unknown if this compromises their tolerance to high salinity. We employed a comparative approach to investigate the mechanisms of a derived freshwater phenotype and the fate of an ancestral euryhaline phenotype after invasion of a freshwater environment. We compared physiological and transcriptomic responses to high and low salinity stress in fresh and brackish water populations and found an enhanced plasticity to low salinity in the freshwater population coupled with a reduced ability to acclimate to high salinity. Transcriptomic data identified genes with a conserved common response, a conserved salinity dependent response, and responses associated with population divergence. Conserved common acclimation responses revealed stress responses and alterations in cell-cycle regulation as important mechanisms in the general osmotic response. Salinity-specific responses included the regulation of genes involved in ion transport, intracellular calcium, energetic processes, and cellular remodeling. Genes diverged between populations were primarily those showing salinity-specific expression and included those regulating polyamine homeostasis and cell cycle. Additionally, when populations were matched with their native salinity, expression patterns were consistent with the concept of “transcriptomic resilience,” suggesting local adaptation. These findings provide insight into the fate of a plastic phenotype after a shift in environmental salinity and help to reveal mechanisms allowing for euryhalinity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3