Integration of actomyosin contractility with cell-cell adhesion during dorsal closure

Author:

Duque Julia1,Gorfinkiel Nicole1ORCID

Affiliation:

1. Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, 28049 Cantoblanco Madrid, Spain

Abstract

In this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure, during the morphogenesis of the amnioserosa, the main force-generating tissue during the process of Dorsal Closure in Drosophila. Our work reveals that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. In contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure. Furthermore, we show that in AS cells, Rok controls Myosin foci formation and Mbs regulates not only Myosin phosphorylation but also adhesion dynamics through the control of Moesin phosphorylation, showing that Mbs coordinates actomyosin contractility with cell-cell adhesion during amnioserosa morphogenesis.

Funder

Ministerio de Ciencia e Innovacion

Marie Curie Career Integration Grant

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3