Kctd15 regulates nephron segment development by repressing Tfap2a activity

Author:

Chambers Brooke E.1,Clark Eleanor G.1,Gatz Allison E.1,Wingert Rebecca A.1ORCID

Affiliation:

1. Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, 46556, USA

Abstract

A functional vertebrate kidney relies on structural units called nephrons, which are epithelial tubules with a sequence of segments each expressing a distinct repertoire of solute transporters. The transcriptional codes driving regional specification, solute transporter program activation, and terminal differentiation of segment populations remain poorly understood. Here, we demonstrate that the KCTD15 paralogs, kctd15a and kctd15b, function in concert to restrict distal early (DE)/thick ascending limb (TAL) segment lineage assignment in the developing zebrafish pronephros by repressing Tfap2a activity. During renal ontogeny, expression of these factors co-localized with tfap2a in distal tubule precursors. kctd15 loss primed nephron cells to adopt distal fates by driving slc12a1, kcnj1a.1, and stc1 expression. These phenotypes were resultant of Tfap2a hyperactivity, where kctd15a/b-deficient embryos exhibited increased abundance of this transcription factor. Interestingly, tfap2a reciprocally promoted kctd15 transcription, unveiling a circuit of autoregulation operating in nephron progenitors. Concomitant kctd15b knockdown with tfap2a overexpression further expanded the DE population. Our study reveals that a transcription factor-repressor feedback module employs tight regulation of Tfap2a and Kctd15 kinetics to control nephron segment fate choice and differentiation during kidney development.

Funder

National Institutes of Health

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3