Sensory and Motor Neurones Responsible for the Local Bending Response in Leeches

Author:

KRISTAN WILLIAM B.1

Affiliation:

1. Department of Biology, University of California, San Diego, La Jolla, California 92093

Abstract

1. Intracellular recordings were made from identified mechanosensory neurones (T and P cells) and longitudinal muscle motor neurones of leeches Hirudo medicinalis and Macrobdella decora while the skin was electrically stimulated to produce local bending responses. 2. The stimulus intensity required to produce local bending was found to activate the mechanosensory neurones at physiological firing rates. For a given stimulation frequency, intracellular activation of the mechanosensory neurones produced the same local bending response as did skin stimulation. Hyperpolarization sufficient to block the propagation of the afferent impulses into the central nervous system eliminated the local bending response to skin stimulation. 3. Stimulating identified longitudinal muscle motor neurones at frequencies observed during the local bending response produced body wall movements similar to those seen in local bending. Hyperpolarization of the motor neurones to block impulse initiation abolished local bending. 4. Mechanosensory neurone to longitudinal muscle motor neurone connexions were demonstrated to be effective and reliable, but polysynaptic for all but the previously documented monosynaptic connexions from mechanosensory neurones onto the L motor neurone (Nicholls & Purves, 1970). 5. It is concluded that the previously identified mechanosensory and motor neurones are exclusively responsible for the local bending response.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3