Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy

Author:

Lin Bo1,Li Yang1,Han Lu1,Kaplan Aaron D.2,Ao Ying1,Kalra Spandan3,Bett Glenna C. L.4,Rasmusson Randall L.2,Denning Chris3,Yang Lei1

Affiliation:

1. Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th Street, 8117 Rangos Research Center, Pittsburgh, PA 15201, USA

2. Center for Cellular and Systems Electrophysiology, Departments of Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA

3. Department of Stem Cells, Tissue Engineering & Modelling (STEM), University of Nottingham, Nottingham, NG7 2RD, UK

4. Departments of Obstetrics and Gynecology, and Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA

Abstract

ABSTRACT Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca2+, mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca2+ level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3