Bats go head-under-heels: the biomechanics of landing on a ceiling

Author:

Riskin Daniel K.1,Bahlman Joseph W.1,Hubel Tatjana Y.2,Ratcliffe John M.3,Kunz Thomas H.4,Swartz Sharon M.12

Affiliation:

1. Department of Ecology and Evolutionary Biology, Brown University, Providence,RI 02912, USA

2. Division of Engineering, Brown University, Providence, RI 02912, USA

3. Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

4. Center for Ecology and Conservation Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA

Abstract

SUMMARY Bats typically roost head-under-heels but they cannot hover in this position, thus, landing on a ceiling presents a biomechanical challenge. To land, a bat must perform an acrobatic flip that brings the claws of the toes in contact with the ceiling and do so gently enough as to avoid injury to its slender hindlimbs. In the present study, we sought to determine how bats land,to seek a link between landing kinematics and ceiling impact forces, and to determine whether landing strategies vary among bat species. To do this, we measured the kinematics and kinetics of landing behaviour in three species of bats as they landed on a force-measuring platform (Cynopterus brachyotis, N=3; Carollia perspicillata, N=5; Glossophaga soricina, N=5). Kinematics were similar for all bats within a species but differed among species. C. brachyotisperformed four-point landings, during which body pitch increased until the ventral surface of the body faced the ceiling and the thumbs and hindlimbs simultaneously grasped the surface. Bats of the other two species performed two-point landings, whereby only the hindlimbs made contact with the ceiling. During these two-point landings, the hindlimbs were drawn up the side of the body to come in contact with the ceiling, causing simultaneous changes in body pitch, roll and yaw over the course of the landing sequence. Right-handed and left-handed forms of the two-point landing were observed, with individuals often switching back and forth between them among landing events. The four-point landing of C. brachyotis resulted in larger peak forces(3.7±2.4 body weights; median ± interquartile range) than the two-point landings of C. perspicillata (0.8±0.6 body weights)or G. soricina (0.8±0.2 body weights). Our results demonstrate that the kinematics and kinetics of landing vary among bat species and that there is a correlation between the way a bat moves its body when it lands and the magnitude of peak impact force it experiences during that landing. We postulate that these interspecific differences in impact force could result because of stronger selective pressure for gentle landing in cave-roosting(C. perspicillata, G. soricina) versus foliage-roosting(C. brachyotis) species.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3