Exploring the limits to turning performance with size and shape variation in dogs

Author:

Haagensen Tina12,Gaschk Joshua L.1ORCID,Schultz Johanna T.13ORCID,Clemente Christofer J.1ORCID

Affiliation:

1. School of Science and Engineering, University of the Sunshine Coast 1 , Sippy Downs, QLD 4558 , Australia

2. Kristiansand Dyrepark 2 , 4609 Kardemomme by , Norway

3. The Robotics and Autonomous Systems Group 3 , CSIRO Data61, Brisbane, QLD 4069 , Australia

Abstract

ABSTRACT Manoeuvrability, the ability to make rapid changes in direction, is central to animal locomotion. Turning performance may depend on the ability to successfully complete key challenges including: withstanding additional lateral forces, maintaining sufficient friction, lateral leaning during a turn and rotating the body to align with the new heading. We filmed high-speed turning in domestic dogs (Canis lupus familiaris) to quantify turning performance and explore how performance varies with body size and shape. Maximal speed decreased with higher angular velocity, greater centripetal acceleration and smaller turning radii, supporting a force limit for wider turns and a friction limit for sharp turns. Variation in turning ability with size was complex: medium sized dogs produced greater centripetal forces, had relatively higher friction coefficients, and generally aligned the body better with the heading compared with smaller and larger bodied dogs. Body shape also had a complex pattern, with longer forelimbs but shorter hindlimbs being associated with better turning ability. Further, although more crouched forelimbs were associated with an increased ability to realign the body in the direction of movement, more upright hindlimbs were related to greater centripetal and tangential accelerations. Thus, we demonstrate that these biomechanical challenges to turning can vary not only with changes in speed or turning radius, but also with changes in morphology. These results will have significant implications for understanding the link between form and function in locomotory studies, but also in predicting the outcome of predator–prey encounters.

Funder

Australian Research Council

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3