Loss of Elp1 perturbs histone H2A.Z and the Notch signaling pathway

Author:

Cameron BreAnna1,Lehrmann Elin2ORCID,Chih Tien1ORCID,Walters Joseph1,Buksch Richard1,Snyder Sara1,Goffena Joy1ORCID,Lefcort Frances3ORCID,Becker Kevin G.4ORCID,George Lynn1ORCID

Affiliation:

1. Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA

2. Computational Biology & Genomics Core (CBGC), Laboratory of Genetics and Genomics (LGG), Department of Health and Human Services (DHHS), National Institute on Aging, Intramural Research Program (NIA IRP), National Institutes of Health (NIH), Biomedical Research Center, Baltimore, MD 21224, USA

3. Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA

4. Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA

Abstract

ABSTRACT Elongator dysfunction is increasingly recognized as a contributor to multiple neurodevelopmental and neurodegenerative disorders including familial dysautonomia, intellectual disability, amyotrophic lateral sclerosis, and autism spectrum disorder. Although numerous cellular processes are perturbed in the context of Elongator loss, converging evidence from multiple studies has resolved Elongator's primary function in the cell to the modification of tRNA wobble uridines and the translational regulation of codon-biased genes. Here we characterize H2a.z, encoding the variant H2a histone H2A.Z, as an indirect Elongator target. We further show that canonical Notch signaling, a pathway directed by H2A.Z, is perturbed as a consequence of Elp1 loss. Finally, we demonstrate that hyperacetylation of H2A.Z and other histones via exposure to the histone deacetylase inhibitor Trichostatin A during neurogenesis corrects the expression of Notch3 and rescues the development of sensory neurons in embryos lacking the Elp1 Elongator subunit.

Funder

National Institutes of Health

National Institute on Aging

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3