Divergence of desiccation-related traits in two Drosophila species of the takahashii subgroup from the western Himalayas

Author:

Parkash Ravi1,Ramniwas Seema1,Kajla Babita1,Aggarwal Dau Dayal1

Affiliation:

1. Department of Genetics, Maharshi Dayanand University, Type IV/35, M.D.U., Campus, Rohtak-124001, India

Abstract

SUMMARY Drosophila nepalensis is more abundant under colder and drier montane habitats in the western Himalayas compared with Drosophila takahashii, but the mechanistic basis of such a climatic adaptation is largely unknown. We tested the hypothesis that divergence in the physiological basis of desiccation-related traits is consistent with species-specific adaptations to climatic conditions. Drosophila nepalensis showed approximately twofold higher desiccation resistance, hemolymph content as well as carbohydrate content than D. takahashii despite a modest difference in rate of water loss (0.3% h–1). Water loss before succumbing to death (dehydration tolerance) was much higher in D. nepalensis (82.32%) than in D. takahashii (∼50%). A greater loss of hemolymph water under desiccation stress until death is associated with higher desiccation resistance in D. nepalensis. In both species, carbohydrates were utilized under desiccation stress, but a higher level of stored carbohydrates was evident in D. nepalensis. Further, we found increased desiccation resistance in D. nepalensis through acclimation whereas D. takahashii lacked such a response. Thus, species-specific divergence in water-balance-related traits in these species is consistent with their adaptations to wet and dry habitats.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3