Smelling your way to food: can bed bugs use our odour?

Author:

Harraca V.12,Ryne C.1,Birgersson G.2,Ignell R.2

Affiliation:

1. Division of Chemical Ecology, Department of Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden

2. Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-230 53 Alnarp, Sweden

Abstract

SUMMARY The resurgence in developed countries of the common bed bug, Cimex lectularius, has led to a search for new sustainable methods to monitor and control this human ectoparasite. Because of increased resistance to insecticides, traps baited with attractive cues are considered a promising method to be developed into efficient monitoring tools for bed bugs. Despite their potential as attractants, only a few studies have investigated the odorant cues implicated in the attraction of bed bugs to human hosts. In this study, we used aeration extracts from human volunteers to assess the role of olfaction in host searching by bed bugs. By coupled gas chromatography and single sensillum recordings on all the antennal sensilla, we measured the electrophysiological response elicited by the compounds present in our human odour extracts. Only five compounds were clearly detected by the olfactory receptor neurons housed in the smooth-peg sensilla of the bed bugs. We tested the behavioural effect of these extracts in a still-air arena and showed a gradient of repellence linked to the dose, as well as a higher propensity of local search behaviour associated with human odours containing a lower ratio of 6-methyl-5-hepten-2-one to C7–C10 aldehydes. We conclude that human odour alone has a weak influence on the behaviour of C. lectularius and we propose that human kairomones may have a significant impact on bed bug behaviour in combination with heat and carbon dioxide, the only two currently known attractive vertebrate cues used by bed bugs for host seeking.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semiochemicals modulating bed bug behaviour;Current Opinion in Insect Science;2024-08

2. Investigating the role of blow fly olfaction in flystrike in sheep;Animal Production Science;2024-01-05

3. Volatile Organic Compounds: A Promising Tool for Bed Bug Detection;International Journal of Environmental Research and Public Health;2023-03-22

4. Chemical Communication of the Head Lice with the Human Host;Current Tropical Medicine Reports;2022-12-19

5. Skin volatile organic compound emissions from 14 healthy young adults under controlled conditions;Building and Environment;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3