The response of the copepod Acartia tonsa to the hydrodynamic cues of small-scale, dissipative eddies in turbulence

Author:

Elmi Dorsa1,Webster Donald R.1,Fields David M.2

Affiliation:

1. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355 USA

2. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544 USA

Abstract

This study quantifies the behavioral response of a marine copepod (Acartia tonsa) to individual, small-scale, dissipative vortices that are ubiquitous in turbulence. Vortex structures were created in the laboratory using a physical model of a Burgers vortex with characteristics corresponding to typical dissipative vortices that copepods are likely to encounter in the turbulent cascade. To examine the directional response of copepods, vortices were generated with the vortex axis aligned in either horizontal or vertical directions. Tomographic particle image velocimetry was used to measure the volumetric velocity field of the vortex. Three-dimensional copepod trajectories were digitally reconstructed and overlaid on the vortex flow field to quantify A. tonsa’s swimming kinematics relative to the velocity field and to provide insight to the copepod behavioral response to hydrodynamic cues. The data show significant changes in swimming kinematics and an increase in relative swimming velocity and hop frequency with increasing vortex strength. Furthermore, in moderate-to-strong vortices, A. tonsa moved at elevated speed in the same direction as the swirling flow and followed spiral trajectories around the vortex, which would retain the copepod within the feature and increase encounter rates with other similarly behaving Acartia. While changes in swimming kinematics depended on vortex intensity, orientation of the vortex axis showed minimal significant effect. Hop and escape jump densities were largest in the vortex core, which is spatially coincident with the peak in vorticity suggesting that vorticity is the hydrodynamic cue that evokes these behaviors.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference49 articles.

1. External energy and plankton: new insights on the role of small-scale turbulence on zooplankton ecology;Alcaraz;Oecol. Aquatic,1992

2. Effects of turbulence on the development of phytoplankton biomass and copepod populations in marine microcosms;Alcaraz;Mar. Ecol. Prog. Ser.,1988

3. Interaction between turbulence and zooplankton in laboratory microcosms;Alcaraz,1989

4. Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies;Bartumeus;Phys. Rev. Lett.,2002

5. Fine-scale observations of the predatory behaviour of the carnivorous copepod Paraeuchaeta norvegica and the escape responses of their ichthyoplankton prey, Atlantic cod (Gadus morhua);Browman;Mar. Biol.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3