14-3-3 proteins regulate desmosomal adhesion via plakophilins

Author:

Rietscher Katrin1,Keil René1,Jordan Annemarie1,Hatzfeld Mechthild1ORCID

Affiliation:

1. Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany

Abstract

Desmosomes are essential for strong intercellular adhesion and are abundant in tissues exposed to mechanical strain. At the same time, desmosomes need to be dynamic to allow for remodeling of epithelia during differentiation or wound healing. Phosphorylation of desmosomal plaque proteins appears essential for desmosome dynamics. However, the mechanisms how context-dependent post-translational modifications regulate desmosome formation, dynamics or stability are incompletely understood. Here, we show that growth factor signaling regulates the phosphorylation-dependent association of plakophilins 1 and 3 with 14-3-3 protein isoforms and uncover unique and partially antagonistic functions of members of the 14-3-3 family in the regulation of desmosomes. 14-3-3γ associated primarily with cytoplasmic plakophilin 1 phosphorylated at S155 and destabilized intercellular cohesion of keratinocytes by reducing its incorporation into desmosomes. In contrast, stratifin/14-3-3σ interacted preferentially with S285-phosphorylated plakophilin 3 to promote its accumulation at tricellular contact sites, leading to stable desmosomes. Taken together, our study identifies a new layer of regulation of intercellular adhesion by 14-3-3 proteins.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3