Affiliation:
1. Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Abstract
Desmosomes are essential for strong intercellular adhesion and are abundant in tissues exposed to mechanical strain. At the same time, desmosomes need to be dynamic to allow for remodeling of epithelia during differentiation or wound healing. Phosphorylation of desmosomal plaque proteins appears essential for desmosome dynamics. However, the mechanisms how context-dependent post-translational modifications regulate desmosome formation, dynamics or stability are incompletely understood. Here, we show that growth factor signaling regulates the phosphorylation-dependent association of plakophilins 1 and 3 with 14-3-3 protein isoforms and uncover unique and partially antagonistic functions of members of the 14-3-3 family in the regulation of desmosomes. 14-3-3γ associated primarily with cytoplasmic plakophilin 1 phosphorylated at S155 and destabilized intercellular cohesion of keratinocytes by reducing its incorporation into desmosomes. In contrast, stratifin/14-3-3σ interacted preferentially with S285-phosphorylated plakophilin 3 to promote its accumulation at tricellular contact sites, leading to stable desmosomes. Taken together, our study identifies a new layer of regulation of intercellular adhesion by 14-3-3 proteins.
Funder
Deutsche Forschungsgemeinschaft
Publisher
The Company of Biologists
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献