Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications

Author:

Cherry L.M.1,Faulkner A.J.1,Grossberg L.A.1,Balczon R.1

Affiliation:

1. Department of Psychiatry and Behavioral Sciences, University of Texas Mental Sciences Institute, Houston 77030.

Abstract

The kinetochore, a proteinaceous plate that is the site for attachment of spindle microtubules to the metaphase chromosome, can be visualized using anti-kinetochore indirect immunofluorescence. We have used computer-assisted image analysis to measure the variation of kinetochore surface areas, as reflected by immunofluorescence areas, in cell lines derived from rat kangaroo, Chinese hamster and common rat, to determine if our size estimates correlate well with those obtained using measurements from electron micrographs. In addition, we used male and female human fibroblast cell lines, as well as a transformed human female cell line as well as a transformed human female cell line (HeLa), to examine kinetochore size variation among cells, between sexes, and between cell lines. We found that our system gave reproducible estimates of kinetochore size, and that these sizes correlated very well (r = 0.95) with the electron micrograph measurements. In examining variation within humans, we observed measurable differences between cell lines. Despite this difference, all the human lines had size distributions that were leptokurtotic and positively skewed. The fact that very few chromosomes exhibited areas smaller than the mode gives support to the idea that mammalian chromosomes may require a specific, minimum amount of kinetochore material in order to maintain stable attachment to the mitotic spindle. On the other hand, the positive skewness seems to indicate that larger kinetochores, possibly the result of events such as Robertsonian fusions, are fully functional. The retention of this plasticity may allow the chromosomes to maintain an evolutionary adaptability that might otherwise be lost.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3