The Cdc14p phosphatase affects late cell-cycle events and morphogenesis inCandida albicans

Author:

Clemente-Blanco Andrés1,González-Novo Alberto2,Machín Félix3,Caballero-Lima David1,Aragón Luis3,Sánchez Miguel2,de Aldana Carlos R. Vázquez2,Jiménez Javier2,Correa-Bordes Jaime1

Affiliation:

1. Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, Avda Elvas SN, 06071, Badajoz, Spain

2. Instituto de Microbiología-Bioquímica, Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain

3. Cell Cycle Group, Clinical Sciences Centre, Medical Research Council, Imperial College London, W12 0NN, UK

Abstract

We have characterized the CDC14 gene, which encodes a dual-specificity protein phosphatase in Candida albicans, and demonstrated that its deletion results in defects in cell separation, mitotic exit and morphogenesis. The C. albicans cdc14Δ mutants formed large aggregates of cells that resembled those found in ace2-null strains. In cdc14Δ cells, expression of Ace2p target genes was reduced and Ace2p did not accumulate specifically in daughter nuclei. Taken together, these results imply that Cdc14p is required for the activation and daughter-specific nuclear accumulation of Ace2p. Consistent with a role in cell separation, Cdc14p was targeted to the septum region during the M-G1 transition in yeast-form cells. Interestingly, hypha-inducing signals abolished the translocation of Cdc14p to the division plate, and this regulation depended on the cyclin Hgc1p, since hgc1Δ mutants were able to accumulate Cdc14p in the septum region of the germ tubes. In addition to its role in cytokinesis, Cdc14p regulated mitotic exit, since synchronous cultures of cdc14Δ cells exhibited a severe delay in the destruction of the mitotic cyclin Clb2p. Finally, deletion of CDC14 resulted in decreased invasion of solid agar medium and impaired true hyphal growth.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3