Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract
Author:
Chang Ching-Pin1, Stankunas Kryn1, Shang Ching1, Kao Shih-Chu1, Twu Karen Y.1, Cleary Michael L.2
Affiliation:
1. Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA. 2. Department of Pathology, Stanford University, Stanford, CA 94305, USA.
Abstract
The patterning of the cardiovascular system into systemic and pulmonic circulations is a complex morphogenetic process, the failure of which results in clinically important congenital defects. This process involves extensive vascular remodeling and coordinated division of the cardiac outflow tract(OFT). We demonstrate that the homeodomain transcription factor Pbx1 orchestrates separate transcriptional pathways to control great-artery patterning and cardiac OFT septation in mice. Pbx1-null embryos display anomalous great arteries owing to a failure to establish the initial complement of branchial arch arteries in the caudal pharyngeal region. Pbx1 deficiency also results in the failure of cardiac OFT septation. Pbx1-null embryos lose a transient burst of Pax3 expression in premigratory cardiac neural crest cells (NCCs) that ultimately specifies cardiac NCC function for OFT development, but does not regulate NCC migration to the heart. We show that Pbx1 directly activates Pax3, leading to repression of its target gene Msx2 in NCCs. Compound Msx2/Pbx1-null embryos display significant rescue of cardiac septation, demonstrating that disruption of this Pbx1-Pax3-Msx2 regulatory pathway partially underlies the OFT defects in Pbx1-null mice. Conversely, the great-artery anomalies of compound Msx2/Pbx1-null embryos remain within the same spectrum as those of Pbx1-null embryos. Thus, Pbx1 makes a crucial contribution to distinct regulatory pathways in cardiovascular development.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Reference65 articles.
1. Abu-Issa, R., Smyth, G., Smoak, I., Yamamura, K. and Meyers, E. N. (2002). Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development129,4613-4625. 2. Abu-Shaar, M., Ryoo, H. D. and Mann, R. S.(1999). Control of the nuclear localization of Extradenticle by competing nuclear import and export signals. Genes Dev.13,935-945. 3. Arnold, J. S., Werling, U., Braunstein, E. M., Liao, J.,Nowotschin, S., Edelmann, W., Hebert, J. M. and Morrow, B. E.(2006). Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development133,977-987. 4. Brendolan, A., Ferretti, E., Salsi, V., Moses, K., Quaggin, S.,Blasi, F., Cleary, M. L. and Selleri, L. (2005). A Pbx1-dependent genetic and transcriptional network regulates spleen ontogeny. Development132,3113-3126. 5. Brown, C. B., Feiner, L., Lu, M. M., Li, J., Ma, X., Webber, A. L., Jia, L., Raper, J. A. and Epstein, J. A. (2001). PlexinA2 and semaphorin signaling during cardiac neural crest development. Development128,3071-3080.
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|