Skylight Polarization Patterns and the Orientation of Migratory Birds

Author:

ABLE KENNETH P.1

Affiliation:

1. Department of Biology, State University of New York Albany, NY 12222, USA

Abstract

Patterns of polarized light present in the clear dusk sky provide directional information relevant to the orientation behaviour of migratory birds. Experiments performed with white-throated sparrows (Zonotrichia albicollis) and American tree sparrows (Spizella arborea), North American night migrants, examined migratory orientation between the time of sunset and the first appearance of stars under several manipulations of skylight polarization patterns. Under clear skies, birds tested in Emlen funnel orientation cages oriented their hopping basically parallel to the E-vector of polarized light, with a bias towards the brightest part of the sky (sunset direction). Under solid, thick overcast conditions (no polarized light from the natural sky), birds showed axially bimodal hopping orientation parallel to an imposed E-vector. When birds were tested in cages covered with depolarizing material under a clear sky, their hopping orientation was seasonally appropriate and indistinguishable from controls viewing an unaltered clear sky. Skylight polarization patterns are not necessary for the occurrence of migratory orientation, but birds respond strongly to manipulations of the E-vector direction. The results reported here support the hypothesis that the relevant stimulus is the E-vector orientation rather than other parameters of skylight, e.g. intensity or colour patterns, degree of polarization. It appears that these night migrants are using skylight polarization at dusk as one of a set of multiple compass capabilities. Because of the necessarily artificial nature of the polarized light stimuli used in the experimental manipulations, it has not been possible to establish the relationship between this orientation cue and other known mechanisms (magnetic, sun and star compasses).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3