Cell surface oligosaccharides on Dictyostelium during development

Author:

AMATAYAKUL-CHANTLER SUPAVADEE1,FERGUSON MICHAEL A. J.2,DWEK RAYMOND A.1,RADEMACHER THOMAS W.1,PAREKH RAJ B.3,CRANDALL IAN E.4,NEWELL PETER C.4

Affiliation:

1. Oxford Glycobiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford 0X1 3QU, UK

2. Oxford Glycobiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford 0X1 3QU, UK; Present address: Department of Biochemistry, University of Dundee, Dundee DD1 4HN, UK

3. Oxford GlycoSystems, Unit 4 Hitching Court, Blacklands Way, Abingdon, Oxon 0X14 1RG, UK

4. Department of Biochemistry, University of Oxford, South Parks Road, Oxford 0X1 3QU, UK

Abstract

Developmental studies of the changes in protein glycosylation are useful in elucidating the role of oligosaccharides in biological events. We have used the chemical technique, hydrazinolysis, to release oligosaccharides from cell surface glycoproteins of Dictyostelium discoideum. Oligomannose type, xylose- and fucose-containing oligosaccharides were found to be present. The charged oligosaccharides contained sulphate and mannose 6-phosphate residues; no sialic acid was detected. The charged oligosaccharides also contained significant amounts of xylose, arabinose, fucose and galactose, as well as mannose and N-acetylglucosamine, which were the main constituents of the neutral glycans. By monitoring the chemical characteristics of the liberated oligosaccharides, dramatic changes in both the charge and size distribution of cell surface oligosaccharides were observed throughout the 24 h period of cell development. A comparison, however, between the neutral glycan structures of prestalk and prespore cells, over the same time frame showed no dramatic differences Discoidin, a lectin present on the cell surface of 8 h cells, was found not to be glycosylated. Affinity chromatography using immobilised discoidin was used to probe a sugar library made from the cell surface glycoproteins of 8h cells. Discoidin was found to bind selectively an oligosaccharide with the structure Manα3(Manα6)(Xylβ2)Manβ4GlcNAc. This oligosaccharide lacks a conventional N,N'-diacetylchitobiose core and has only been previously observed in plant glycoproteins. Peptide-N-glycosidase F treatment of horseradish peroxidase released an identical structure, confirming that the oligosaccharide was not a degradation fragment of the hydrazine. The oligosaccharide was found to inhibit discoidinmediated haemagglutination with a Kt of 0.75 mM, a concentration approximately 100 times lower than that for galactose The correlation between changes in the amoebal plasma membrane oligosaccharide structures and the biological events occurring at different stages of development such as cell-cell adhesion and cellsubstratum attachment suggest an important role for sugars in these processes

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3