Plant senescence cues entry into diapause in the gall flyEurosta solidaginis: resulting metabolic depression is critical for water conservation

Author:

Williams Jason B.1,Lee Richard E.1

Affiliation:

1. Department of Zoology, Miami University, Oxford, OH 45056,USA

Abstract

SUMMARYMechanisms and possible cues for seasonal increases in desiccation resistance in larvae of the goldenrod gall fly Eurosta solidaginis,were examined before and after natural and premature plant senescence, or after being removed from their gall and placed in either 100, 95 or 75%relative humidity (RH). Rates of water loss were 8.6-fold lower, averaging 0.7±0.2 μg mm–2 h–1, in larvae from senescent gall tissue and after all RH treatments than in control larvae from pre-senescent plants. Enhanced desiccation resistance occurred quickly,within 3 days of removal from their gall. Contrary to most previous reports, a large majority of the increased desiccation resistance (∼85%) was due to reduced respiratory transpiration with the remainder being the result of a lowered cuticular permeability. Rates of cuticular water loss were reduced by the presence of a vapor pressure gradient between the larval hemolymph and environmental water vapor and were probably due to increases in cuticular lipids and/or production of the cryoprotectant glycerol. Metabolic rate was reduced by over fourfold, averaging 0.07±0.01 μl CO2g–1 h–1, in larvae from senescent gall tissue and all RH treatments compared to larvae from pre-senescent plants. The magnitude of the reduction in metabolic rates indicated that these larvae had entered diapause. In addition, larvae entered diapause in response to removal from, or degeneration of, the gall tissue they feed, on rather than seasonal changes in temperature or photoperiod. The low metabolic rates of the diapausing larvae probably allowed them to dramatically reduce their respiratory transpiration and total rate of water loss compared with non-diapausing controls. Thus, diapause, with its associated lowered metabolic rate, may be essential for conserving water in overwintering temperate insects, which may be dormant for six or more months of the year.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3