α6β4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-κB-dependent resistance to apoptosis in 3D mammary acini

Author:

Friedland Julie C.123,Lakins Johnathon N.2345,Kazanietz Marcelo G.1,Chernoff Jonathan6,Boettiger David7,Weaver Valerie M.2345

Affiliation:

1. Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA

2. Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA

3. Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA

4. Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA

5. Center for Bioengineering and Tissue Regeneration, University of California San Franisco, San Francisco, CA 94143, USA

6. Fox Chase Cancer Center, Philadelphia, PA 19111, USA

7. Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Malignant transformation and multidrug resistance are linked to resistance to apoptosis, yet the molecular mechanisms that mediate tumor survival remain poorly understood. Because the stroma can influence tumor behavior by regulating the tissue phenotype, we explored the role of extracellular matrix signaling and tissue organization in epithelial survival. We report that elevated (α6)β4 integrin-dependent Rac-Pak1 signaling supports resistance to apoptosis in mammary acini by permitting stress-dependent activation of the p65 subunit of NF-κB through Pak1. We found that inhibiting Pak1 through expression of N17Rac or PID compromises NF-κB activation and renders mammary acini sensitive to death, but that resistance to apoptosis could be restored to these structures by overexpressing wild-type NF-κB p65. We also observed that acini expressing elevated levels of Pak1 can activate p65 and survive death treatments, even in the absence of activated Rac, yet will die if activation of NF-κB is simultaneously inhibited through expression of IκBαM. Thus, mammary tissues can resist apoptotic stimuli by activating NF-κB through α6β4 integrin-dependent Rac-Pak1 signaling. Our data emphasize the importance of the extracellular matrix stroma in tissue survival and suggest that α6β4 integrin-dependent Rac stimulation of Pak1 could be an important mechanism mediating apoptosis-resistance in some breast tumors.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3