Molecular motors implicated in the axonal transport of tau and α-synuclein

Author:

Utton Michelle A.1,Noble Wendy J.1,Hill Josephine E.1,Anderton Brian H.1,Hanger Diane P.1

Affiliation:

1. Department of Neuroscience, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK

Abstract

Tau and α-synuclein are both proteins implicated in the pathology of neurodegenerative disease. Here we have investigated the mechanisms of axonal transport of tau and α-synuclein, because failure of axonal transport has been implicated in the development of several neurodegenerative disorders. We found that the transport of both of these proteins depend on an intact microtubule- but not actin-cytoskeleton, and that tau and α-synuclein both move at overall slow rates of transport. We used time-lapse video microscopy to obtain images of live neurons that had been transfected with plasmids expressing proteins tagged with enhanced green fluorescent protein. We found that particulate structures containing tau or α-synuclein travel rapidly when moving along axons but spend the majority of the time paused, and these structures have similar characteristics to those previously observed for neurofilaments. The motile particles containing tau or α-synuclein colocalise with the fast-transporting molecular motor kinesin-1 in neurons. Co-immunoprecipitation experiments demonstrate that tau and α-synuclein are each associated with complexes containing kinesin-1, whereas only α-synuclein appears to interact with dynein-containing complexes. In vitro glutathione S-transferase-binding assays using rat brain homogenate or recombinant protein as bait reveals a direct interaction of kinesin-1 light chains 1 and 2 with tau, but not with α-synuclein. Our findings suggest that the axonal transport of tau occurs via a mechanism utilising fast transport motors, including the kinesin family of proteins, and that α-synuclein transport in neurons may involve both kinesin and dynein motor proteins.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3