The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner

Author:

McFadden David G.1,Barbosa Ana C.1,Richardson James A.2,Schneider Michael D.3,Srivastava Deepak14,Olson Eric N.1

Affiliation:

1. Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA

2. Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA

3. Center for Cardiovascular Development, Department of Medicine, Molecular and Cellular Biology, and Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030-3498, USA

4. Department of Pediatrics, University of Texas Southwestern Medical Center,6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA

Abstract

The basic helix-loop-helix transcription factors Hand1 and Hand2 display dynamic and spatially restricted expression patterns in the developing heart. Mice that lack Hand2 die at embryonic day 10.5 from right ventricular hypoplasia and vascular defects, whereas mice that lack Hand1 die at embryonic day 8.5 from placental and extra-embryonic abnormalities that preclude analysis of its potential role in later stages of heart development. To determine the cardiac functions of Hand1, we generated mice harboring a conditional Hand1-null allele and excised the gene by cardiac-specific expression of Cre recombinase. Embryos homozygous for the cardiac Hand1 gene deletion displayed defects in the left ventricle and endocardial cushions, and exhibited dysregulated ventricular gene expression. However, these embryos survived until the perinatal period when they died from a spectrum of cardiac abnormalities. Creation of Hand1/2 double mutant mice revealed gene dose-sensitive functions of Hand transcription factors in the control of cardiac morphogenesis and ventricular gene expression. These findings demonstrate that Hand factors play pivotal and partially redundant roles in cardiac morphogenesis, cardiomyocyte differentiation and cardiac-specific transcription.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3