Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends

Author:

Vaughan K.T.1,Tynan S.H.1,Faulkner N.E.1,Echeverri C.J.1,Vallee R.B.1

Affiliation:

1. University of Massachusetts Medical School, Worcester, MA 01605, USA.

Abstract

Cytoplasmic dynein is a minus end-directed microtubule motor responsible for centripetal organelle movement and several aspects of chromosome segregation. Our search for cytoplasmic dynein-interacting proteins has implicated the dynactin complex as the cytoplasmic dynein ‘receptor’ on organelles and kinetochores. Immunofluorescence microscopy using a total of six antibodies generated against the p150Glued, Arp1 and dynamitin subunits of dynactin revealed a novel fraction of dynactin-positive structures aligned in linear arrays along the distal segments of interphase microtubules. Dynactin staining revealed that these structures colocalized extensively with CLIP-170. Cytoplasmic dynein staining was undetectable, but extensive colocalization with dynactin became evident upon transfer to a lower temperature. Overexpression of the dynamitin subunit of dynactin removed Arp1 from microtubules but did not affect microtubule-associated p150Glued or CLIP-170 staining. Brief acetate treatment, which has been shown to affect lysosomal and endosomal traffic, also dispersed the Golgi apparatus and eliminated the microtubule-associated staining pattern. The effect on dynactin was rapidly reversible and, following acetate washout, punctate dynactin was detected at microtubule ends within 3 minutes. Together, these findings identify a region along the distal segments of microtubules where dynactin and CLIP-170 colocalize. Because CLIP-170 has been reported to mark growing microtubule ends, our results indicate a similar relationship for dynactin. The functional interaction between dynactin and cytoplasmic dynein further suggests that this these regions represent accumulations of cytoplasmic dynein cargo-loading sites involved in the early stages of minus end-directed organelle transport.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3