Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway

Author:

Hutchins M.U.1,Veenhuis M.1,Klionsky D.J.1

Affiliation:

1. University of California, Davis, Section of Microbiology, Davis, CA 95616, USA.

Abstract

Organelle biogenesis and turnover are necessary to maintain biochemical processes that are appropriate to the needs of the eukaryotic cell. Specific degradation of organelles in response to changing environmental cues is one aspect of achieving proper metabolic function. For example, the yeast Saccharomyces cerevisiae adjusts the level of peroxisomes in response to differing nutritional sources. When cells are grown on oleic acid as the sole carbon source, peroxisome biogenesis is induced. Conversely, a subsequent shift to glucose-rich or nitrogen-limiting conditions results in peroxisome degradation. The degradation process, pexophagy, requires the activity of vacuolar hydrolases. In addition, peroxisome degradation is specific. Analyses of cellular marker proteins indicate that peroxisome degradation under these conditions occurs more rapidly and to a greater extent than mitochondrial, Golgi, or cytosolic protein delivery to the vacuole by the non-selective autophagy pathway. To elucidate the molecular mechanism of selective peroxisome degradation, we examined pexophagy in mutants that are defective in autophagy (apg) and the selective targeting of aminopeptidase I to the vacuole by the cytoplasm to vacuole targeting (Cvt) pathway. Inhibition of peroxisome degradation in cvt and apg mutants indicates that these pathways overlap and that peroxisomes are delivered to the vacuole by a mechanism that utilizes protein components of the Cvt/autophagy pathways.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3