Affiliation:
1. Cancer Research Center of the Russian Federation, Moscow, Russia.
Abstract
Behaviour of epitheliocytes and fibroblasts on special discontinuous substrata (metallic grids with square openings of 45x45 microm2) was examined in order to compare the ability of these cells to spread in two mutually perpendicular directions and to stretch over the void spaces. Two cell types with typical fibroblastic morphology, the AGO 1523 line of human foreskin fibroblasts and secondary cultures of mouse embryo fibroblasts, and three cell types with typical epithelial morphology, primary mouse hepatocytes, the IAR-2 line of rat liver cells and the MDCK line of canine kidney epithelial cells (clone 20) were used. We also examined the epitheliocytes (MDCK cells, clone 20) transformed to fibroblast-like morphology by treatment with hepatocyte growth factor/scatter factor (HGF/SF). Time-lapse video microscopy, scanning electron microscopy and immunofluorescence microscopy were used to examine cell reorganizations at various stages of spreading. It was found that early stages of spreading of fibroblasts and epitheliocytes were similar: the cell spread along two bars, perpendicular to each other (bar and crossbar), with the formation of a small triangular lamellar cytoplasm stretched over the opening. Later central parts of the bodies of the fibroblasts retracted from the bars so that the cells remained attached only by their polar lamellae. Successive expansions and partial retractions of these lamellae led to elongation of the cell body crossing several openings of the grid. Epitheliocytes, in contrast to fibroblasts, at the late stages of spreading did not retract their bodies and did not contract polar lamellae. As a result, their central lamellae stretched progressively over the openings. As a result of the treatment of MDCK epitheliocytes with HGF/SF the behaviour of the cells on the grids became similar to that of fibroblasts. It is suggested that these distinct spreading patterns of epitheliocytes and fibroblasts are due to the type-specific differences in the actin-myosin cortex. Experiments with microtubule-specific drugs, colcemid and taxol, indicate that the organization of this cortex is under microtubular control.
Publisher
The Company of Biologists
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献