Molecular architecture of the lens fiber cell basal membrane complex

Author:

Bassnett S.1,Missey H.1,Vucemilo I.1

Affiliation:

1. Department of Ophthalmology, Washington University School of Medicine, Box 8096, St Louis, MO 63110-1031, USA. bassnetts@am.seer.wustl.edu

Abstract

Lens fiber cells are transparent, highly elongated, epithelial cells. Because of their unusual length these cells represent a novel model system to investigate aspects of epithelial cell polarity. In this study, we examined the fiber cell basal membrane complex (BMC). The BMC anchors fiber cells to the lens capsule and facilitates their migration across the capsule. Confocal microscopy revealed that bundled actin filaments converge beneath the center of each BMC and insert into the lateral membrane at points enriched in N-cadherin. Two other contractile proteins, caldesmon and myosin, were enriched in the BMC, co-localizing with f-actin bundles. The actin/N-cadherin complex formed a hexagonal lattice, cradling the posterior face of the lens. Removal of the capsule caused the tips of the fiber cells to break off, remaining attached to the stripped capsule. This provided a method for assaying cell adhesion and purifying BMC components. Fiber cell adhesion required Mg2+ and/or Ca2+ and was disrupted by incubation with beta1 integrin antibody. BMC proteins were compared with samples from the neighboring lateral membrane. Although some components were common to both samples, others were unique to the BMC. Furthermore, some lateral membrane proteins, most notably lens major intrinsic protein (MIP), were excluded from the BMC. Western blotting of BMC preparations identified several structural proteins originally found in focal adhesions and two kinases, FAK and MLCK, previously undescribed in the lens. These data suggest that the BMC constitutes a distinct membrane domain in the lens. The structural organization of the BMC suggests a role in shaping the posterior lens face and hence the refractive properties of the eye.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference38 articles.

1. DNA degradation in terminally differentiating lens fiber cells from chick embryos.;Appleby;Proc. Nat. Acad. Sci. USA,1977

2. The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation.;Bassnett;Invest. Ophthalmol. Vis. Sci,1995

3. Chromatin degradation in differentiating fiber cells of the eye lens.;Bassnett;J. Cell Biol,1997

4. Lens membranes. II. Isolation and characterization of the main intrinsic polypeptide (MIP) of bovine lens fiber membranes.;Broekhuyse;Exp. Eye Res,1976

5. Focal adhesions, contractility, and signaling.;Burridge;Annu. Rev. Cell Dev. Biol,1996

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3