Reduced dosage of a single fission yeast MCM protein causes genetic instability and S phase delay

Author:

Liang D.T.1,Hodson J.A.1,Forsburg S.L.1

Affiliation:

1. Department of Biology, University of California, San Diego CA 92093, USA. forsburg@salk.edu

Abstract

MCM proteins are a conserved family of eukaryotic replication factors implicated in the initiation of DNA replication and in the discrimination between replicated and unreplicated chromatin. However, most mcm mutants in yeast arrest the cell cycle after bulk DNA synthesis has occurred. We investigated the basis for this late S phase arrest by analyzing the effects of a temperature-sensitive mutation in fission yeast cdc19(+)(mcm2(+)). cdc19-P1 cells show a dramatic loss of viability at the restrictive temperature, which is not typical of all S phase mutants. The cdc19-P1 cell cycle arrest requires an intact damage-response checkpoint and is accompanied by increased rates of chromosome loss and mitotic recombination. Chromosomes from cdc19-P1 cells migrate aberrantly in pulsed-field gels, typical of strains arrested with unresolved replication intermediates. The cdc19-P1 mutation reduces the level of the Cdc19 protein at all temperatures. We compared the effects of disruptions of cdc19(+)(mcm2(+)), cdc21(+)(mcm4(+)), nda4(+)(mcm5(+)) and mis5(+)(mcm6(+)); in all cases, the null mutants underwent delayed S phase but were unable to proceed through the cell cycle. Examination of protein levels suggests that this delayed S phase reflects limiting, but not absent, MCM proteins. Thus, reduced dosage of MCM proteins allows replication initiation, but is insufficient for completion of S phase and cell cycle progression.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3