Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli

Author:

Stone D.M.1,Murone M.1,Luoh S.1,Ye W.1,Armanini M.P.1,Gurney A.1,Phillips H.1,Brush J.1,Goddard A.1,de Sauvage F.J.1,Rosenthal A.1

Affiliation:

1. Departments of Neuroscience, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA.

Abstract

Drosophila Suppressor of fused (Su(fu)) encodes a novel 468-amino-acid cytoplasmic protein which, by genetic analysis, functions as a negative regulator of the Hedgehog segment polarity pathway. Here we describe the primary structure, tissue distribution, biochemical and functional analyses of a human Su(fu) (hSu(fu)). Two alternatively spliced isoforms of hSu(fu) were identified, predicting proteins of 433 and 484 amino acids, with a calculated molecular mass of 48 and 54 kDa, respectively. The two proteins differ only by the inclusion or exclusion of a 52-amino-acid extension at the carboxy terminus. Both isoforms were expressed in multiple embryonic and adult tissues, and exhibited a developmental profile consistent with a role in Hedgehog signaling. The hSu(fu) contains a high-scoring PEST-domain, and exhibits an overall 37% sequence identity (63% similarity) with the Drosophila protein and 97% sequence identity with the mouse Su(fu). The hSu(fu) locus mapped to chromosome 10q24-q25, a region which is deleted in glioblastomas, prostate cancer, malignant melanoma and endometrial cancer. HSu(fu) was found to repress activity of the zinc-finger transcription factor Gli, which mediates Hedgehog signaling in vertebrates, and to physically interact with Gli, Gli2 and Gli3 as well as with Slimb, an F-box containing protein which, in the fly, suppresses the Hedgehog response, in part by stimulating the degradation of the fly Gli homologue. Coexpression of Slimb with Su(fu) potentiated the Su(fu)-mediated repression of Gli. Taken together, our data provide biochemical and functional evidence for the hypothesis that Su(fu) is a key negative regulator in the vertebrate Hedgehog signaling pathway. The data further suggest that Su(fu) can act by binding to Gli and inhibiting Gli-mediated transactivation as well as by serving as an adaptor protein, which links Gli to the Slimb-dependent proteasomal degradation pathway.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3