Meiotic activation of rat pachytene spermatocytes with okadaic acid: the behaviour of synaptonemal complex components SYN1/SCP1 and COR1/SCP3

Author:

Tarsounas M.1,Pearlman R.E.1,Moens P.B.1

Affiliation:

1. Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada. moens@yorku.ca

Abstract

The phosphatase inhibitor okadaic acid accelerates meiotic events in rodent germ cells in culture. Isolated pachytene spermatocytes treated with okadaic acid proceed to a metaphase I arrest in a few hours as opposed to the similar process in vivo, which requires several days. Leptotene/zygotene spermatocytes cannot be activated in this way, suggesting that okadaic acid enables cells to bypass a sensor of the meiotic progression, which is pachytene specific. We monitored the chromosome behaviour accompanying the transition to metaphase I in rat spermatocytes with antibodies against COR1/SCP3, a component of the meiotic chromosome cores, and against the synaptic protein, SYN1/SCP1. Okadaic acid induced a rapid synaptonemal complex dissolution and bivalent separation, followed by chromosome condensation and chiasmata formation, similar to the succession of events in untreated cells. The similarity between meiosis I induced with okadaic acid and the meiosis I events in vivo extends to the dissolution of the nuclear membrane and the disappearance of the microtubule network at the onset of metaphase I. This cell culture system provides a model for the in vivo transition from pachytene to metaphase I and therefore can be used in the study of this transition at the molecular level. The effect of okadaic acid is most likely mediated by the activation of tyrosine kinases, as addition of genistein, a general tyrosine kinase inhibitor, completely abolishes the observed effect of okadaic acid on chromosome metabolism. The okadaic acid-induced progression to the metaphase I arrest is not affected by the inhibition of protein synthesis. However, pachytene spermatocytes incubated in the presence of protein synthesis inhibitors for 6 hours show loss of synapsis which is abnormal in that it is not accompanied by chiasmata formation. The two meiosis-specific proteins, SYN1/SCP1 and COR1/SCP3, are efficiently phosphorylated in vitro by extracts from isolated pachytene cells. Extracts from cells that have reached metaphase I upon okadaic acid treatment, with concomitant displacement of SYN1/SCP1 and COR1/SCP3 from their chromosomes, do not have this capability. These data support the hypothesis that phosphorylation of SYN1/SCP1 and COR1/SCP3 targets their removal from the chromosomes and that activity of the kinases involved correlates with the presence of these two proteins on the chromosomes.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3