The putative nuclear receptor mediator TIF1alpha is tightly associated with euchromatin

Author:

Remboutsika E.1,Lutz Y.1,Gansmuller A.1,Vonesch J.L.1,Losson R.1,Chambon P.1

Affiliation:

1. Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/, College de France, BP 163, France.

Abstract

Ligand-dependent transcriptional regulation by nuclear receptors is believed to be mediated by intermediary factors (TIFs) acting on remodelling of the chromatin structure and/or the activity of the transcriptional machinery. The putative transcriptional mediator TIF1alpha is a nuclear protein kinase that has been identified via its interaction with liganded nuclear receptors, including retinoic acid (RAR), retinoid X (RXR) and estrogen (ER) receptors. Here, we demonstrate that TIF1alpha is a non-histone chromosomal protein tightly associated with highly accessible euchromatic regions of the genome. Immunofluorescence confocal microscopy reveals that TIF1alpha exhibits a finely granular distribution in euchromatin of interphase nuclei, while it is mostly excluded from condensed chromatin and metaphase chromosomes. Immunoelectron microscopy shows that, in contrast to the heterochromatin protein HP1alpha, most of TIF1alpha is associated with euchromatin, where it is preferentially localised on regions known to be sites for RNA polymerase II (perichromatin fibrils and borders between euchromatin and heterochromatin). Early mouse embryos as well as embryonal carcinoma (EC) and embryonic stem (ES) cells express high levels of TIF1alpha. These levels dramatically decrease during organogenesis and upon differentiation of P19 EC cells, indicating that TIF1alpha is preferentially expressed in undifferentiated pluripotent cells in the course of development. Therefore, TIF1alpha could belong to a novel class of chromatin-associated TIFs that facilitate the access of transregulators (e.g. liganded nuclear receptors) to their cognate sites in target genes, thereby participitating in the epigenetic control of transcription during embryonic development and cell differentiation.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3