E-MAP-115 (ensconsin) associates dynamically with microtubules in vivo and is not a physiological modulator of microtubule dynamics

Author:

Faire K.1,Waterman-Storer C.M.1,Gruber D.1,Masson D.1,Salmon E.D.1,Bulinski J.C.1

Affiliation:

1. Department of Anatomy, Columbia University, College of Physicians & Surgeons, Rm BB1213, New York, NY 10032-3702, USA.

Abstract

Microtubule-associated proteins (MAPs) have been hypothesized to regulate microtubule dynamics and/or functions. To test hypotheses concerning E-MAP-115 (ensconsin) function, we prepared stable cell lines expressing conjugates in which the full-length MAP (Ensc) or its microtubule-binding domain (EMTB) was conjugated to one or more green fluorescent protein (GFP) molecules. Because both distribution and microtubule-binding properties of GFP-Ensc, GFP-EMTB, and 2x, 3x, or 4xGFP-EMTB chimeras all appeared to be identical to those of endogenous E-MAP-115 (ensconsin), we used the 2xGFP-EMTB molecule as a reporter for the behavior and microtubule-binding function of endogenous MAP. Dual wavelength time-lapse fluorescence imaging of 2xGFP-EMTB in cells microinjected with labeled tubulin revealed that this GFP-MAP chimera associated with the lattice of all microtubules immediately upon polymerization and dissociated concomitant with depolymerization, suggesting that dynamics of MAP:microtubule interactions were at least as rapid as tubulin:microtubule dynamics in the polymerization reaction. Presence of both GFP-EMTB chimeras and endogenous E-MAP-115 (ensconsin) along apparently all cellular microtubules at all cell cycle stages suggested that the MAP might function in modulating stability or dynamics of microtubules, a capability shown previously in transiently transfected cells. Although cells with extremely high expression levels of GFP-EMTB chimera exhibited stabilized microtubules, cells expressing four to ten times the physiological level of endogenous MAP exhibited microtubule dynamics indistinguishable from those of untransfected cells. This result shows that E-MAP-115 (ensconsin) is unlikely to function as a microtubule stabilizer in vivo. Instead, this MAP most likely serves to modulate microtubule functions or interactions with other cytoskeletal elements.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3