Fibrillin assembly: dimer formation mediated by amino-terminal sequences

Author:

Ashworth J.L.1,Kelly V.1,Wilson R.1,Shuttleworth C.A.1,Kielty C.M.1

Affiliation:

1. Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. cay.kielty@man.ac.uk

Abstract

We have investigated recombinant fibrillin-1 (profib-1) and fibrillin-2 (glyfib-2) molecules encoding the proline- or glycine-rich regions with flanking domains (exons 9–11), in order to establish whether these sequences might mediate specific molecular recognition events important in fibrillin assembly. Our data demonstrate that both recombinant molecules can form extracellular dimers, but highlight subtle differences in the stability of these dimers. Following expression in COS-1 cells, SDS-PAGE analysis showed that glyfib-2 was present intracellularly as monomers, and extracellularly as monomers and disulphide-bonded dimers. Size fractionation in native non-reducing conditions prior to SDS-PAGE analysis highlighted that glyfib-2 also formed non-covalent associations. In contrast, profib-1 appeared monomeric in cells and medium. Using an in vitro translation system supplemented with semipermeabilised HT1080 cells together with chemical crosslinking, dimers of the fibrillin-1 and fibrillin-2 molecules were detected. Dimerisation was not cell-dependent since molecules translated in the absence of cells dimerised, and was not an intracellular event as judged by proteinase K digestions. A crosslinking and coimmunoprecipitation strategy provided a means of investigating whether molecular chaperones might be involved in preventing dimerisation of translocated molecules. Proteinase K-resistant recombinant molecules associated rapidly with BiP, and thereafter with protein disulphide isomerase and calreticulin. Differences between the two fibrillin isoforms in ability to form stable dimers prompted investigation of the proline- and glycine-rich sequences. Differences in solubility and pI were apparent that may contribute to reduced stability of proline-rich region interactions. These studies suggest that extracellular dimer formation mediated by interactions of the proline- and glycine-rich regions may be a crucial early step in the extracellular assembly of fibrillin into microfibrils.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3