Bone strength is maintained after 8 months of inactivity in hibernating golden-mantled ground squirrels, Spermophilus lateralis

Author:

Utz Jenifer C.1,Nelson Stacy2,O'Toole Brendan J.2,van Breukelen Frank1

Affiliation:

1. School of Life Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA

2. Howard R. Hughes College of Engineering, University of Nevada at Las Vegas,4505 Maryland Parkway, Las Vegas, NV 89154, USA

Abstract

SUMMARY Prolonged inactivity leads to disuse atrophy, a loss of muscle and bone mass. Hibernating mammals are inactive for 6–9 months per year but must return to full activity immediately after completing hibernation. This necessity for immediate recovery presents an intriguing conundrum, as many mammals require two to three times the period of inactivity to recover full bone strength. Therefore, if hibernators experience typical levels of bone disuse atrophy during hibernation, there would be inadequate time available to recover during the summer active season. We examined whether there were mechanical consequences as a result of the extended inactivity of hibernation. We dissected femur and tibia bones from squirrels in various stages of the annual hibernation cycle and measured the amount of force required to fracture these bones. Three groups were investigated; summer active animals were captured during the summer and immediately killed, animals in the 1 month detraining group were captured in the summer and killed following a 1-month period of restricted mobility, hibernating animals were killed after 8 months of inactivity. A three-point bend test was employed to measure the force required to break the bones. Apparent flexural strength and apparent flexural modulus (material stiffness) were calculated for femurs. There were no differences between groups for femur fracture force, tibia fracture force, or femur flexural strength. Femur flexural modulus was significantly less for the 1 month detraining group than for the hibernation and summer active groups. Thus, hibernators seem resistant to the deleterious effects of prolonged inactivity during the winter. However, they may be susceptible to immobilization-induced bone loss during the summer.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3