miR-20a regulates proliferation, differentiation and apoptosis in P19 cell model of cardiac differentiation by targeting Smoothened

Author:

Ai Feng1,Zhang Yanwei1,Peng Bangtian1ORCID

Affiliation:

1. Department of Cardiovascular Surgery, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou 450000, People's republic of China

Abstract

ABSTRACT MicroRNA (miR)-20a, a member of the miR-17-92 cluster related to cardiac development, was obviously downregulated in myocardially differentiated P19 cells compared with normal P19 cells. Smoothened (SMO) is a member of the Hh pathway. Hh signaling induces cardiac differentiation in P19 cells, and SMO mediates the Hh pathway during embryonic development. Using bioinformatic prediction software Targetscan (http://www.targetscan.org/), PicTar (http://pictar.bio.nyu.edu), and miRBase (http://microrna.sanger.ac.uk/), miR-20a and the 3′-untranslated region (3′-UTR) of SMO mRNA were predicted to have complementary binding regions. Accordingly, we inferred that miR-20a might act as a regulator of SMO, and regulate proliferation, differentiation and apoptosis in P19 cells. We determined the expression of miR-20a, SMO and marker proteins of cardiomyocytes (cTnT, GATA4 and desmin) by quantitative real-time PCR (qRT-PCR) and western blot assays, and found that P19 cells had differentiated into cardiomyocytes successfully at differentiation day 10, and downregulation of miR-20a and upregulation of SMO existed in myocardially differentiated P19 cells. Cell proliferation, differentiation and apoptosis detection showed that miR-20a upregulation inhibited proliferation and differentiation and enhanced apoptosis in P19 cells. Moreover, we verified that miR-20a directly targeted SMO and knockdown of SMO and miR-20a overexpression had similar effects on P19 cell proliferation, differentiation and apoptosis, which verified the speculation that miR-20a inhibits proliferation and differentiation and enhances apoptosis in P19 cells by directly targeting SMO. Our results suggest that miR-20a may be a potential target against congenital heart diseases.

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3