Mammalian TRP ion channels are insensitive to membrane stretch

Author:

Nikolaev Y. A.12,Cox C. D.1,Ridone P.1,Rohde P. R.1,Cordero-Morales J. F.3,Vásquez V.3,Laver D. R.2,Martinac B.14

Affiliation:

1. Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, 2010, Australia

2. School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, 2308, Australia

3. Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, 38163, USA

4. St. Vincent's Clinical School, University of New South Wales, Sydney, 2052, Australia

Abstract

TRP channels of the transient receptor potential ion channel superfamily are involved in a wide variety of mechanosensory processes, including touch sensation, pain, blood pressure regulation, bone loading, and detection of cerebrospinal fluid flow. However, it is unclear in many instances whether TRP channels are the primary transducers of mechanical force in these processes. In this study, we tested stretch activation of eleven TRP channels from six subfamilies. We found that these TRP channels were insensitive to short membrane stretch in cellular systems. Furthermore, we purified TRPC6 and demonstrated its insensitivity to stretch in liposomes, an artificial bilayer system free from cellular components. Additionally, we demonstrated that when expressed in C. elegans neurons, mouse TRPC6 restores the mechanoresponse of a touch insensitive mutant but requires diacylglycerol for activation. These results strongly suggest that the mammalian members of the TRP ion channel family are insensitive to tension induced by cell membrane stretching and thus they are more likely activated by cytoplasmic tethers or downstream components and act as amplifiers of cellular mechanosensory signaling cascades.

Funder

National Health and Medical Research Council

NSW Ministry of Health

University of New South Wales

National Institutes of Health

United States_Israel Binational Science

American Heart Association

University of Newcastle Australia

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3