Robust Wnt signaling is maintained by a Wg protein gradient and Fz2 receptor activity in the developing Drosophila wing

Author:

Chaudhary Varun12ORCID,Hingole Swapnil2,Frei Jana1,Port Fillip1,Strutt David3,Boutros Michael1ORCID

Affiliation:

1. German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany

2. Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India

3. Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK

Abstract

ABSTRACT Wnts are secreted proteins that regulate cell fate during development of all metazoans. Wnt proteins were proposed to spread over several cells to activate signaling directly at a distance. In the Drosophila wing epithelium, an extracellular gradient of the Wnt1 homolog Wingless (Wg) was observed extending over several cells away from producing cells. Surprisingly, however, it was also shown that a membrane-tethered Neurotactin-Wg fusion protein (NRT-Wg) can largely replace endogenous Wg, leading to proper patterning of the wing. Therefore, the functional range of Wg and whether Wg spreading is required for correct tissue patterning remains controversial. Here, by capturing secreted Wg on cells away from the source, we show that Wg acts over a distance of up to 11 cell diameters to induce signaling. Furthermore, cells located outside the reach of extracellular Wg depend on the Frizzled2 receptor to maintain signaling. Frizzled2 expression is increased in the absence of Wg secretion and is required to maintain signaling and cell survival in NRT-wg wing discs. Together, these results provide insight into the mechanisms by which robust Wnt signaling is achieved in proliferating tissues.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3