The Control of Respiratory Movements in Crustacea by Oxygen and Carbon Dioxide

Author:

FOX H. MUNRO1,JOHNSON M. L.1

Affiliation:

1. Zoology Department, University of Birmingham

Abstract

1. The respiratory movements of the barnacle Balanus and of the phyllopod Cheirocephalus are not accelerated either by decreased oxygen or by increased carbon dioxide tension in the water. 2. The rate of movement of the scaphognathite of the crayfish Astacus is accelerated by a fall in oxygen but not by a rise in carbon dioxide tension of the environment. 3. The rate of movement of the pleopods of the fresh-water isopod Asellus is accelerated by a fall in oxygen but not by a rise of carbon dioxide tension. 4. In the sea-shore isopod Ligia, submerged in sea water, the rate of pleopod movement is not accelerated by a decrease in oxygen tension below that in equilibrium with air, but a rise in oxygen tension above the latter value slows respiratory movements. Carbon dioxide has no accelerating effect. 5. Both a decrease in oxygen and an increase in carbon dioxide tension accelerate the respiratory pleopod movements of the amphipods Gammarus pulex and G. locusta. 6. Whereas in the fresh-water G. pulex the quickened respiratory rhythm is permanent at each decreased oxygen and increased carbon dioxide tension, in the marine G. locusta these changes in rate of beat are transitory. This is correlated with the greater oxygen consumption of the marine species.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3