Monoterpenes alter TAR1-driven physiology in Drosophila species

Author:

Finetti Luca1,Tiedemann Lasse2,Zhang Xiaoying2,Civolani Stefano3,Bernacchia Giovanni1ORCID,Roeder Thomas234

Affiliation:

1. Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy

2. Laboratory of Molecular Physiology, Department of Zoology, Kiel University, Kiel, Germany

3. InnovaRicerca s.r.l. Monestirolo, Ferrara, Italy

4. German Center for Lung Research (DZL), Airway Research Center North (ARCN), Kiel, Germany

Abstract

Monoterpenes are molecules with insecticide properties whose mechanism of action is however not completely elucidated. Furthermore, they seem to be able to modulate the monoaminergic system and several behavioural aspects in insects. In particular, tyramine (TA) and octopamine (OA) and their associated receptors orchestrate physiological processes such as feeding, locomotion and metabolism. Here we show that monoterpenes not only act as biopesticides in Drosophila species but can cause complex behavioural alterations that require a functional type 1 tyramine receptors (TAR1s). Variations in metabolic traits as well as locomotory activity were evaluated in both Drosophila suzukii and Drosophila melanogaster after treatment with three monoterpenes. A TAR1 defective D. melanogaster strain (TAR1PL00408) was used to better understand the relationships between the receptor and monoterpenes-related behavioural changes. Immunohistochemistry analysis revealed that, in the D. melanogaster brain, TAR1 appeared to be mainly expressed in the pars intercerebralis, lateral horn, olfactory and optic lobes and suboesophageal ganglion lobes.In comparison to the D. melanogaster wild type, the TAR1PL00408 flies showed a phenotype characterized by higher triglyceride levels and food intake as well as lower locomotory activity. The monoterpenes, tested at sublethal concentrations, were able to induce a downregulation of the TAR1 coding gene in both Drosophila species. Furthermore, monoterpenes also altered the behaviour in D. suzukii and D. melanogaster wild types 24 h after a continuous monoterpene exposure. Interestingly, they were ineffective in modifying the physiological performances of TAR1 defective flies. In conclusion, it appears that monoterpenes not only act as biopesticides for Drosophila but they can also interfere with its behaviour and metabolism in a TAR1-dependent fashion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3