Evidence that water exudes when holothurian connective tissue stiffens

Author:

Tamori Masaki1,Takemae Chigusa1,Motokawa Tatsuo1

Affiliation:

1. Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, W3-42, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo 152-8551, Japan

Abstract

SUMMARYThe dermis of the body wall of sea cucumbers is composed mainly of extracellular materials such as collagens, proteoglycans and water; the water content is as high as 80%. Yet it shows rapid changes in stiffness under neural control. The dermis has been proposed to assume three mechanical states, soft, standard, and stiff. We investigated the relationship between the stiffness and the dermal mass and volume. Both the mass and volume decreased by 15% when the dermis stiffened from the standard state to the stiff state by mechanical stimulation and by chemical stimulation with potassium-rich seawater. The effect of the latter was abolished by anesthesia. The mass decrease was caused largely by water exudation. Tensilin, a holothurian protein that stiffens the soft dermis to form the standard state, did not cause any changes in mass. These results suggested that the stiffening mechanisms responsible for the transition from the soft state to the standard state, and that from the standard to the stiff state, are different. The removal of water from the dermis in the standard state, by soaking in hypertonic solution, caused only slight stiffening, which suggested that water exudation was not the direct cause of the stiffening. A change of pH of the surrounding medium, either more acidic or basic, was not associated with mass changes, although it caused a large increase in stiffness. The implications of the present results for the molecular mechanisms of the stiffness changes are discussed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3