The interaction of CO2 concentration and spatial location on O2 flux and mass transport in the freshwater macrophytes Vallisneria spiralis and V. americana

Author:

Nishihara Gregory N.1,Ackerman Josef D.12

Affiliation:

1. Department of Integrative Biology, University of Guelph, Guelph, Ontario,N1G 2W1, Canada

2. Faculty of Environmental Sciences, University of Guelph, Guelph, Ontario,N1G 2W1, Canada

Abstract

SUMMARY The biology of aquatic organisms determines the maximum rates of physiological processes, but the mass transport of nutrients determines the nominal rates at which these processes occur. Maximum O2 flux(Pmax) at 17.1 mmol m–3 CO2was higher for the leaves of the freshwater macrophyte Vallisneria spiralis [Pmax=0.013±0.001 mmol m–2 s–1 (gchla+bm–2)–1 (mean ± s.e.m.)] than for the closely related species, Vallisneria americana[Pmax=0.008±0.001 mmol m–2s–1 (gchla+bm–2)–1]. The O2 flux saturated at freestream velocities >4.5±1.2 cm s–1 and was spatially invariant for both species. However, a tenfold decrease in CO concentration to 1.71 mmol m–3 changed the nature of the relationship between O2 flux and spatial location along the leaf surface, and reduced the O2 flux of V. spiralis to values similar to V. americana. The O2 flux[Pmax=0.007±0.001 mmol m–2s–1 (gchla+bm–2)–1] saturated at the upstream location(i.e. 1 cm from the leading edge of the leaf) but was found to increase linearly with freestream velocity [slope=0.057±0.011 mmol m–2 s–1 (gchla+bm–2)–1 (m s–1)–1] at the downstream location (i.e. 7 cm from the leading edge) at freestream velocities >1.8±0.9 cm s–1. Conversely, mass transfer rates did not vary with CO2 concentration, and were characteristic of a laminar concentration boundary layer at the upstream location and a turbulent concentration boundary layer at the downstream location. Rates of mass transfer measured directly from O2 profiles were not predicted by theoretical values based on hydrodynamic measurements. Moreover, the concentration boundary layer thickness (δCBL) values measured directly from O2 profiles were 48±2% and 21±1% of the predicted theoretical δCBL values at the upstream and downstream locations, respectively. It is evident that physiological processes involving mass transport are coupled and vary in space. Mass transport investigations of biological systems based solely on hydrodynamic measurements need to be interpreted with caution.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3