Claudin-4 reconstituted in unilamellar vesicles is sufficient to form tight interfaces that partition membrane proteins

Author:

Belardi Brian1,Son Sungmin1,Vahey Michael D.1,Wang Jinzhi2,Hou Jianghui2,Fletcher Daniel A.134ORCID

Affiliation:

1. Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, 94720, USA

2. Department of Internal Medicine & Center for Investigation of Membrane Excitability Disease, Washington University Medical School, St. Louis, MO 63110, USA

3. Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

4. Chan Zuckerberg Biohub, San Francisco, CA 94158, USA

Abstract

Tight junctions have been hypothesized to act as molecular fences in the plasma membrane of epithelial cells, helping to form differentiated apical and basolateral domains. While this fence function is believed to arise from the interaction of four-pass transmembrane claudins, the complexity of tight junctions has made direct evidence of their role as a putative diffusion barrier difficult to obtain. Here we address this challenge by reconstituting claudin-4 into giant unilamellar vesicles using microfluidic jetting. We find that reconstituted claudin-4 is sufficient to form adhesive membrane interfaces without accessory proteins present in vivo. By controlling the molecular composition of the inner and outer leaflets of jetted vesicle membranes, we show that claudin-4-mediated interfaces can drive partitioning of extracellular membrane proteins with ectodomains as small as 5 nm but not of inner or outer leaflet lipids. Our findings indicate that homotypic interactions of claudins and their small size can contribute to the polarization of epithelial cells.

Funder

National Institutes of Health

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3