Regulation of cochlear convergent extension by the vertebrate planar cell polarity pathway is dependent on p120-catenin

Author:

Chacon-Heszele Maria F.1,Ren Dongdong12,Reynolds Albert B.3,Chi Fanglu2,Chen Ping1

Affiliation:

1. Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, Georgia 30322, USA.

2. Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China.

3. Department of Cancer Biology, Vanderbilt University, 211 Kirkland Hall, Nashville, TN 37240, USA.

Abstract

The vertebrate planar cell polarity (PCP) pathway consists of conserved PCP and ciliary genes. During development, the PCP pathway regulates convergent extension (CE) and uniform orientation of sensory hair cells in the cochlea. It is not clear how these diverse morphogenetic processes are regulated by a common set of PCP genes. Here, we show that cellular contacts and geometry change drastically and that the dynamic expression of N-cadherin and E-cadherin demarcates sharp boundaries during cochlear extension. The conditional knockout of a component of the adherens junctions, p120-catenin, leads to the reduction of E-cadherin and N-cadherin and to characteristic cochlear CE defects but not misorientation of hair cells. The specific CE defects in p120-catenin mutants are in contrast to associated CE and hair cell misorientation defects observed in common PCP gene mutants. Moreover, the loss-of-function of a conserved PCP gene, Vangl2, alters the dynamic distribution of N-cadherin and E-cadherin in the cochlea and causes similar abnormalities in cellular morphology to those found in p120-catenin mutants. Conversely, we found that Pcdh15 interacts genetically with PCP genes to regulate the formation of polar hair bundles, but not CE defects in the cochlea. Together, these results indicate that the vertebrate PCP pathway regulates CE and hair cell polarity independently and that a p120-catenin-dependent mechanism regulates CE of the cochlea.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3