Hunting in archerfish – an ecological perspective on a remarkable combination of skills

Author:

Schuster Stefan1ORCID

Affiliation:

1. Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany

Abstract

ABSTRACT Archerfish are well known for using jets of water to dislodge distant aerial prey from twigs or leaves. This Review gives a brief overview of a number of skills that the fish need to secure prey with their shooting technique. Archerfish are opportunistic hunters and, even in the wild, shoot at artificial objects to determine whether these are rewarding. They can detect non-moving targets and use efficient search strategies with characteristics of human visual search. Their learning of how to engage targets can be remarkably efficient and can show impressive degrees of generalization, including learning from observation. In other cases, however, the fish seem unable to learn and it requires some understanding of the ecological and biophysical constraints to appreciate why. The act of shooting has turned out not to be of a simple all-or-none character. Rather, the fish adjust the volume of water fired according to target size and use fine adjustments in the timing of their mouth opening and closing manoeuvre to adjust the hydrodynamic stability of their jets to target distance. As soon as prey is dislodged and starts falling, the fish make rapid and yet sophisticated multi-dimensional decisions to secure their prey against many intraspecific and interspecific competitors. Although it is not known why and how archerfish evolved an ability to shoot in the first place, I suggest that the evolution of shooting has strongly pushed the co-evolution of diverse other skills that are needed to secure a catch.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference91 articles.

1. A review of the archerfishes (family Toxotidae);Allen;Rec. Australian Mus.,1978

2. From micro to nano contacts in biological attachment devices;Arzt;Proc. Natl. Acad. Sci. USA,2003

3. Visual acuity in the archerfish: behavior, anatomy, and neurophysiology;Ben-Simon;J. Vis.,2012

4. Pop-out in visual search of moving targets in the archer fish;Ben-Tov;Nat. Commun.,2015

5. Potential targets aimed at by spitting cobras when deterring predators from attacking;Berthé;J. Comp. Physiol. A,2013

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3