Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy

Author:

Manders E.M.1,Stap J.1,Brakenhoff G.J.1,van Driel R.1,Aten J.A.1

Affiliation:

1. Laboratory for Radiobiology, University of Amsterdam, The Netherlands.

Abstract

The temporal and spatial progression of DNA replication in interphase nuclei of eukaryotic cells has been investigated. Application of a recently developed technique for the immunofluorescence double staining of cell nuclei labelled first with iododeoxyuridine (IdUrd) and subsequently with chlorodeoxyuridine (CldUrd) allows the visualization of two replication patterns in the same nucleus originating from two different periods of the S-phase. We have analysed changes in the three-dimensional replication patterns during the S-phase. To record dual colour three-dimensional images of doubly stained nuclei, a confocal microscope is used. This CSLM is equipped with a specific laser/filter combination to collect both fluorescence signals (FITC and Texas Red) in a single scan, thus precluding pixel shift between the images. A method for the quantitative evaluation of the degree of overlap between DNA regions replicated in two different periods of the S-phase is applied. The results confirm the generally accepted theory that DNA is replicated coordinately in a specific temporal order during the S-phase. The replication time of a DNA domain (i.e. the time between initiation and termination of DNA replication within a domain) at the very beginning of the S-phase was known to be one hour (Nakamura et al., 1986). Our observations show that in the rest of the S-phase, the replication time of a DNA region is also about one hour. We conclude that replicon clusters located in the same region are replicated in the same relatively short period of time. After this period there is no unreplicated DNA left in this region.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3