Organization and characterization of fibrillar collagens in fish scales in situ and in vitro

Author:

ZYLBERBERG L.1,BONAVENTURE J.2,COHEN-SOLAL L.2,HARTMANN D. J.3,BEREITERHAHN J.4

Affiliation:

1. Université Paris 7, Laboratoire d'Anatomie Comparée URA 11 37, 2, place Jussieu, 75251 Paris cedex 05, France

2. Hôpital des Enfants-Malades, Laboratoire de Physiopathologie des Tissus Conjonctifs pendant la Croissance URA 584, 149, rue de Sèvres,75743 Paris cedex 15, France

3. Institut Pasteur de Lyon, Centre de Radioanalyse, 13-15 rue Domer, 69366 Lyon, France

4. Goethe Universität, Arbeitskreis Kinematische Zellforschung, Senckenberganlage 27, 6000 Frankfurt am Main, Germany

Abstract

The characterization of the fibrillar collagens and the cellular control of their spatial deposition were studied in fish scales using immunofluorescence, electron microscopy, electrophoretic and HPLC analyses, immunoprecipitation and hybridization with cDNA probes. This study was carried out on undisturbed and regenerating scales in situ and in organ and cell cultures from regenerating scales. The hyposquamal scleroblasts forming a pseudoepithelium show an apico-basal polarization and synthesize thick collagen fibrils (100 nm) organized in a plywood pattern as long as the integrity of the cell-cell and cell-collagenous matrix contacts are preserved. In culture, scleroblasts become fibroblastlike and produce an unordered meshwork of thin collagen fibrils (30 nm). Comparison of the synthesized collagens in culture with those extracted from the scales indicates that culture conditions modify fibrillogenesis but do not change the expression of fibrillar collagen genes. Type I collagen, the predominent component, is associated with the minor type V collagen. Type III collagen was not present. In type I collagen, a third chain, α3 chain, was identified. The ratio between the 3 chains suggests the coexistence of two heterotrimers (α(I))2 α2(I) and αl(I) α2(I) α3(I). Analysis by HPLC and electrophoresis of the cyanogen bromide-derived peptides obtained from the purified a3 chain support the hypothesis that α(I) and α3(I) chains are encoded by two different genes. The presence of the two types of heterotrimers in vivo as well as in vitro could correspond to an innate property of the goldfish scleroblasts. Despite the fact that teleost cyanogen bromide-derived peptides differ from those of higher vertebrates, homologies with the mammalian collagen genes (human, for example) are sufficient to allow the detection of mRNA transcripts for αl(I), α2(I) and α2(V) from confluent scleroblast cultures with human probes.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3