The efficiency and timing of plasmid DNA replication in Xenopus eggs: correlations to the extent of prior chromatin assembly

Author:

Sanchez J.A.1,Marek D.1,Wangh L.J.1

Affiliation:

1. Department of Biology, Brandeis University, Waltham, MA 02254.

Abstract

Injection of the circular plasmid FV1 (derived from type I bovine papilloma virus) into Xenopus eggs before the start of the first cell cycle dramatically increases the efficiency of plasmid replication once eggs are chemically activated. We call this the preloading effect and report kinetic and quantitative characterization of this phenomenon here. The timing and the amount of FV1 synthesis were measured by both BrdUTP density labelling and an optimized method of selective enzymatic digestion of replicated and unreplicated molecules using the three methyladenosine-sensitive isoschizomers, DpnI, MboI and Sau3a. DpnI in 100 mM NaCl proved particularly useful for distinguishing and quantitating unreplicated, once-replicated, and repeatedly replicated molecules accumulated over several cell cycles. Our results reveal that both the amount of DNA replicated and the timing of synthesis during the first S-phase correlate with the length of the preloading period. Longer preloading leads to larger amounts of DNA being replicated sooner. In fact, up to 30–50% of 1 ng injected plasmid can replicate in a semiconservative cell cycle-dependent manner during the first S-phase. But such high levels of synthesis during the first cell cycle appear to limit the egg's ability to rereplicate this material in subsequent cell cycles. The preloading effect does not depend on synthesis of either viral or egg proteins, but does appear to correlate with the extent of plasmid assembly into chromatin before the start of the cell cycle. We postulate that each plasmid molecule must achieve a critical degree of chromatin assembly before it can proceed along the replication pathway. These observations illuminate some of the difficulties inherent in building a vector for gene insertion into Xenopus embryos, but also suggest an experimental strategy toward this aim.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3