Abstract
1. A method is described for studying the responses of Daphnia to changes of light intensity with special attention to the behaviour of the individual and to the avoidance of "shock" effects. The types of apparatus used provide for rigid control of the temperature, for illumination from any direction, and for an adjustable rate of change of the light intensity by means of a chemical rheostat.
2. The great majority of Daphnia magna and Daphnia pulex were found to be primarily negatively phototropic and positively geotropic. That is, they always exhibited those tropistic signs under constant conditions of illumination.
3. A reduction of the light intensity causes a temporary reversal of the tropism signs. The secondary signs thus produced are positive phototropism and negative geotropism.
4. The presence of both phototropic and geotropic forces is proved by experiments in which illumination is (1) from one side, (2) from beneath, and (3) from two opposing sides or from above and below simultaneously. In these tests and in others in which very slow and very fast rates of dimming are used the phototropic and geotropic forces are resolved, antagonised, and neutralised in succession. The responses of the Daphnia indicate that there are two types of animals which exhibit exactly the same tropisms, but in one type phototropism is the stronger while in the other geotropism is the stronger.
5. In this material it was found that the temporary secondary tropistic signs persisted only a few minutes while the primary signs persisted for hours, although this effect was somewhat less marked in weak light or in darkness.
6. The difference between "time-change" and "place-change" of light in tensity is pointed out. Daphnia is stimulated by both types of change if the rate of change is sufficiently great.
7. That photosensitive animals are stimulated to respond to changes in the intensity of light only and are merely orientated by the direction of the light is shown in the work of previous, investigators as well as in this paper. The rigidity of this mechanism is indicated by experiments in which the light is graded in intensity at right angles to its direction and in which the light is rendered converging and diverging by a lens.
8. Evidence is given for believing that there is no "absolute optimum" light intensity for Daphnia but that a "relative optimum" exists which is the intensity to which the animals are adapted at the moment.
9. The interval between the inception of the reduction of the light intensity and the beginning of swimming movements in response is called the latent period. The faster the rate of dimming, the shorter is the duration of the latent period. A minimum, amount of intensity change is required to produce any response, at any speed, but beyond that the slower the rate of dimming, the greater is the amount of change required and hence the lower is the absolute intensity at which the response takes place. Ordinarily, the response is maximal in respect to both rate and magnitude.
10. Fatigue will interfere with experimentation unless guarded against.
11. Specimens of Daphinia with reversed primary signs gain temporary secondary signs following an increase of light intensity; otherwise they behave like the more usual forms.
12. The possibility that the processes of adaptation in Daphnia may account for the photic responses observed is discussed. Support for this theory is derived from the fact that it is possible to dim the light over a given range at such a slow rate that no response is produced.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献