Environment, behavior and physiology: do birds use barometric pressure to predict storms?

Author:

Breuner Creagh W.12,Sprague Rachel S.13,Patterson Stephen H.2,Woods H. Arthur2

Affiliation:

1. Wildlife Biology Program, The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA

2. Organismal Biology and Ecology, The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA

3. Pacific Islands Regional Office, NOAA National Marine Fisheries Service, Honolulu Hawaii 96814, USA

Abstract

SUMMARY Severe storms can pose a grave challenge to the temperature and energy homeostasis of small endothermic vertebrates. Storms are accompanied by lower temperatures and wind, increasing metabolic expenditure, and can inhibit foraging, thereby limiting energy intake. To avoid these potential problems, most endotherms have mechanisms for offsetting the energetic risks posed by storms. One possibility is to use cues to predict oncoming storms and to alter physiology and behavior in ways that make survival more likely. Barometric pressure declines predictably before inclement weather, and several lines of evidence indicate that animals alter behavior based on changes in ambient pressure. Here we examined the effects of declining barometric pressure on physiology and behavior in the white-crowned sparrow, Zonotrichia leucophrys. Using field data from a long-term study, we first evaluated the relationship between barometric pressure, storms and stress physiology in free-living white-crowned sparrows. We then manipulated barometric pressure experimentally in the laboratory and determined how it affects activity, food intake, metabolic rates and stress physiology. The field data showed declining barometric pressure in the 12–24 h preceding snowstorms, but we found no relationship between barometric pressure and stress physiology. The laboratory study showed that declining barometric pressure stimulated food intake, but had no effect on metabolic rate or stress physiology. These data suggest that white-crowned sparrows can sense and respond to declining barometric pressure, and we propose that such an ability may be common in wild vertebrates, especially small ones for whom individual storms can be life-threatening events.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3