Rheotaxis revisited: a multi-behavioral and multisensory perspective on how fish orient to flow

Author:

Coombs Sheryl1ORCID,Bak-Coleman Joe2ORCID,Montgomery John3

Affiliation:

1. Bowling Green State University, Department of Biological Sciences and JP Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA

2. University of Washington, Center for an Informed Public and eScience Institute, Seattle, WA 98195, USA

3. University of Auckland, School of Biological Sciences and Institute of Marine Science, Auckland 1142, New Zealand

Abstract

ABSTRACT Here, we review fish rheotaxis (orientation to flow) with the goal of placing it within a larger behavioral and multisensory context. Rheotaxis is a flexible behavior that is used by fish in a variety of circumstances: to search for upstream sources of current-borne odors, to intercept invertebrate drift and, in general, to conserve energy while preventing downstream displacement. Sensory information available for rheotaxis includes water-motion cues to the lateral line and body-motion cues to visual, vestibular or tactile senses when fish are swept downstream. Although rheotaxis can be mediated by a single sense, each sense has its own limitations. For example, lateral line cues are limited by the spatial characteristics of flow, visual cues by water visibility, and vestibular and other body-motion cues by the ability of fish to withstand downstream displacement. The ability of multiple senses to compensate for any single-sense limitation enables rheotaxis to persist over a wide range of sensory and flow conditions. Here, we propose a mechanism of rheotaxis that can be activated in parallel by one or more senses; a major component of this mechanism is directional selectivity of central neurons to broad patterns of water and/or body motions. A review of central mechanisms for vertebrate orienting behaviors and optomotor reflexes reveals several motorsensory integration sites in the CNS that could be involved in rheotaxis. As such, rheotaxis provides an excellent opportunity for understanding the multisensory control of a simple vertebrate behavior and how a simple motor act is integrated with others to form complex behaviors.

Funder

Office of Naval Research

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3